Link between statistical equilibrium fidelity and forecasting skill for complex systems with model error.
نویسندگان
چکیده
Understanding and improving the predictive skill of imperfect models for complex systems in their response to external forcing is a crucial issue in diverse applications such as for example climate change science. Equilibrium statistical fidelity of the imperfect model on suitable coarse-grained variables is a necessary but not sufficient condition for this predictive skill, and elementary examples are given here demonstrating this. Here, with equilibrium statistical fidelity of the imperfect model, a direct link is developed between the predictive fidelity of specific test problems in the training phase where the perfect natural system is observed and the predictive skill for the forced response of the imperfect model by combining appropriate concepts from information theory with other concepts based on the fluctuation dissipation theorem. Here a suite of mathematically tractable models with nontrivial eddy diffusivity, variance, and intermittent non-Gaussian statistics mimicking crucial features of atmospheric tracers together with stochastically forced standard eddy diffusivity approximation with model error are utilized to illustrate this link.
منابع مشابه
Quantifying the Predictive Skill in Long-Range Forecasting. Part II: Model Error in Coarse-Grained Markov Models with Application to Ocean-Circulation Regimes
An information-theoretic framework is developed to assess the predictive skill and model error in imperfect climate models for long-range forecasting. Here, of key importance is a climate equilibrium consistency test for detecting false predictive skill, as well as an analogous criterion describing model error during relaxation to equilibrium. Climate equilibrium consistency enforces the requir...
متن کاملInformation Theory, Model Error, and Predictive Skill of Stochastic Models for Complex Nonlinear Systems
Many problems in complex dynamical systems involve metastable regimes despite nearly Gaussian statistics with underlying dynamics that is very different from the more familiar flows of molecular dynamics. There is significant theoretical and applied interest in developing systematic coarse-grained descriptions of the dynamics, as well as assessing their skill for both shortand long-range predic...
متن کاملA Comparison of the Mahalanobis-Taguchi System to A Standard Statistical Method for Defect Detection
The Mahalanobis-Taguchi System is a diagnosis and forecasting method for multivariate data. Mahalanobis distance is a measure based on correlations between the variables and different patterns that can be identified and analyzed with respect to a base or reference group. This paper presents a comparison of the Mahalanobis-Taguchi System and a standard statistical technique for defect detection ...
متن کاملQuantifying uncertainty for predictions with model error in non-Gaussian systems with intermittency
This paper discusses a range of important mathematical issues arising in applications of a newly emerging stochastic-statistical framework for quantifying and mitigating uncertainties associated with prediction of partially observed and imperfectly modelled complex turbulent dynamical systems. The need for such a framework is particularly severe in climate science where the true climate system ...
متن کاملComparative Study of Static and Dynamic Artificial Neural Network Models in Forecasting of Tehran Stock Exchange
During the recent decades, neural network models have been focused upon by researchers due to their more real performance and on this basis, different types of these models have been used in forecasting. Now, there is a question that which kind of these models has more explanatory power in forecasting the future processes of the stock. In line with this, the present paper made a comparison betw...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 108 31 شماره
صفحات -
تاریخ انتشار 2011